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A half-space problem in the theory of 
fractional order thermoelasticity with 

diffusion. 
 1,2Moustafa M. Salama, 1,3A.M. Kozae, 1M. A. Elsafty,1,3S.S. Abelaziz 

 

 

 
Abstract    We consider in this work the problem of thermoelastic half-space with a permeating substance in contact 

with the bounding plane by employing the fractional order theory of thermoelasticity, the bounding surface of the half -

space is taken to be traction free and subjected to a time dependent thermal shock. The chemical potential is also 

assumed to be a known function of time on the bounding plane. for the inversion of the Laplace transform based on 

Fourier expansion techniques. The temperature, displacement, stress, and concentration as well as the chemical 

potential are obtained. Numerical computations are carried out and represented graphically. 

Index Terms—Generalized thermoelasticity, Thermal shock, Thermoelastic diffusion, fractional order thermoelasticity, 

diffusion. 

——————————      —————————— 

 

1. Introduction 
 

Biot [1] developed the coupled theory of 

thermoelasticity to deal with a defect of the uncoupled 

theory that mechanical causes have no effect on the 

temperature. However, this theory shares a defect of 

the uncoupled theory in that it predicts infinite speeds 

of propagation for heat waves. 

Lord and Shulman [2] introduced the theory of 

generalized thermoelasticity with one relaxation time 

for the special case of an isotropic body. This theory 

was extended by Dhaliwal and Sherief [3] to include 

the anisotropic case. In this theory, a modified law of 

heat conduction including both the heat flux and its 

time derivative replaces the conventional Fourier’s 

law. The heat equation associated with this theory is 

hyperbolic and hence eliminates the paradox of 

infinite speeds of propagation inherent in both the 

uncoupled and coupled theories of thermoelasticity. 

For this theory, Ignaczak [4] studied uniqueness of 

solution; Sherief [5] proved uniqueness and stability. 

Anwar and Sherief [6] and Sherief [7] developed the 

state-space approach to this theory. Anwar and Sherief 

[8] completed the integral equation formulation. 

Sherief and Hamza [9, 10] solved some two-

dimensional problems and studied wave propagation. 

Sherief and El-Maghraby [11, 12] solved two crack 

problems. Sherief [13] solved thermoelastic half-space 

with a permeating substance in contact with the 

bounding plane in the context of the theory of 
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generalized thermoelastic diffusion with one 

relaxation time. 

 El-Maghraby [14–16] solved some two-

dimensional problems for media affected by heat 

sources and body forces. 

Diffusion can be defined as the random walk, of an 

ensemble of particles, from regions of high 

concentration to regions of lower concentration. There 

is now a great deal of interest in the  

study of this phenomenon, due to its many 

applications in geophysics and industrial applications. 

In integrated circuit fabrication, diffusion is used to 

introduce “dopants” in controlled amounts into the 

semiconductor substrate. In particular, diffusion is 

used to form the base and emitter in bipolar 

transistors, form integrated resistors, and form the 

source/drain regions in MOS transistors and dope 

poly-silicon gates in MOS transistors. In most of these 

applications, the concentration is calculated using 

what is known as Fick’s law. This is a simple law that 

does not take into consideration the mutual interaction 

between the introduced substance and the medium into 

which it is introduced or the effect of the temperature 

on this interaction. 

Nowacki [17–20] developed the theory of 

thermoelastic diffusion. In this theory, the coupled 

thermoelastic model is used. This implies infinite 

speeds of propagation of thermoelastic waves. 

Recently, Sherief et al. [21] developed the theory of 

generalized thermoelastic diffusion that predicts finite 

speeds of propagation for thermoelastic and diffusive 

waves. 

Fractional calculus has been used successfully to 

modify many existing models of physical processes. 

The first application of fractional derivatives was given 

by Abel who applied fractional calculus in the solution 

of an integral equation that arises in the formulation of 

the tautochrone problem. One can state that the whole 

theory of fractional derivatives and integrals was 

established in the 2nd half of the 19th century. Caputo 

and Mainardi [22-25]  found good agreement with 

experimental results when using fractional derivatives 

for description of viscoelastic materials and established 

the connection between fractional derivatives and the 

theory of linear viscoelasticity. Right now there are 

five different generalizations of the coupled theory of 

thermoelasticity the details can be found in Hetnarski 

and Ignaczak [26]. All five theories are based on 

assumptions of one kind or another. Also, all these 

theories model the problem of heat conductions in 

solids as a purely wave propagation phenomenon. 

Povstenko [13] made a review of thermoelasticity that 

uses fractional heat conduction equation. The theory of 

thermal stresses based on the heat conduction 

equation with the Caputo time-fractional derivative is 

used by Povstenko [27] to investigate thermal stresses 

in an infinite body with a circular cylindrical hole. 

Povstenko proposed and investigated new models that 

use fractional derivative in [28,30]. Sherief et al. [31] 

developed a new theory of thermoelasticity is derived 

using the methodology of fractional calculus, proved a 

uniqueness theorem and derived a reciprocity relation 

and a variational principle. The theories of coupled 

thermoelasticity and of generalized thermoelasticity 

with one relaxation time follow as limit cases. A 

uniqueness theorem for this model is proved. A 

variational principle and a reciprocity theorem are 

derived. 

Sherief and Abd El-Latief [32]applied the fractional 

order theory of thermoelasticity to a 2D problem for a 

half-space. 

 
2. Formulation of The Problem  

We consider the problem of an isotropic 
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thermoelastic half-space (x ≥ 0) with a permeating 

substance (such as a gas) in contact with the upper 

plane of the half-space (x = 0). The x-axis is taken 

perpendicular to the upper plane pointing inwards. 

This upper plane of the half-space is taken to be 

traction free and is subjected to a time- dependent 

thermal shock. The chemical potential is also 

assumed to be a known function of time on the upper 

plane. All considered functions are assumed to be 

bounded and vanish as x → ∞. 

The equation of motion in the absence of body 

forces is given by [22] 

 

i i  ,  j  j j  ,i  j ,  i ,  i1 2
   =     +  (    +    )    -      -      .u u u C     

,    

   (1) 

where ui are the components of the displacement 

vector, T is the absolute temperature, C is the 

concentration of the diffusive material in the elastic 

body, λ, µ are Lamé’s constants, ρ is the density, and 

β1 and β2 are the material constants given by 

 

 1 = (3+2) t and 2 = (3+2) c , 

 

t  is the coefficient of linear thermal expansion, and 

c  is the coefficient of linear diffusion expansion. 

The energy equation has the form [21] and it can 

be written in fraction order as: 

 

1 1 1

1 1 1

2

E 0 0 0 0 01
k T =ρ  +τ  + T + τ + aT +τ ,βc

t t tt t t

T T e e C C
  

  

  

            
                

D

,   (2) 

 

where k is the thermal conductivity, 10 α  , cE  is 

the specific heat at constant strain, τ0  is the thermal 

relaxation time, ‘a’ is a measure of the 

thermodiffusion effect, T0  is a reference temperature 

assumed to obey the inequality 1T/)TT( 00   

and eij are the components of the strain tensor given by 

 ) u + u( 
2

1
 = e i, jj , iij . (3) 

The diffusion equation has the form Sherief et al 

(2004) 

 

0 = C b D  C + C + ,T a D + e  D ii,iiiikk,2   , (4) 

where D is the diffusion coefficient, b is a measure of 

diffusive effect and  is the diffusion relaxation time. 

The constitutive equations have the form Sherief et al 

(2004) 

  C   )TT(   e   + e  2 = 201kkijijij 
, 

   (5a) 

 
)TT(  a  C b +  e   = P 0kk1 

, (5b) 

where ij are the components of the stress tensor and P is 

the chemical potential. 

 It follows from the description of the problem 

that all considered functions will depend on x and t only. 

We thus obtain the displacement components of the 

form, 

 ux = u(x,t) , uy = uz = 0 . (6) 

The strain components are given by 

 

x x y y zz xy yz zx =   ,   =  =  =  =  = 0  e e e e e eDu
 

where 
x 

 = 



D  

The cubical dilatation e = ekk is equal to 

 .    u = e D  (7) 
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From equation (5a), it follows that the stress tensor 

components have the form 

x  x 1 2
 =  = (    +  2    )   u  -      -    C  ,     D  (8a) 

y  y z  z 1 2
 =  =     u  -      -    C   ,    D  (8b) 

0  z xy zy x  (9) 

Equations (1), (2) and (4) thus reduce to 

  
2

1 2
 u =  u + ( + ) e   T   C      D D D D

,(10) 

1 1 1

1 1 1
2

E 0 0 0 0 01
k T =ρ +τ  + T + τ + aT +τ ,βc

t t tt t t

T T e e C C
  

  

  

            
                

D
 

   (11) 

.0 = C b  D C τ + C + Ta  D+ e β D 222

2
DDD 

   (12) 

By using equation (7), equations (10) - (12) can be 

written as 

  

2

1 22

u
   = (    +  2    )  e  -       -       ,

  t
T C    




D D D

 

   (13) 

 

1 1 1

1 1 1

2

E 0 0 0 0 01
k T =ρ  +τ + T + τ + aT +τ ,βc

t t tt t t

T T e e C C
  

  

  

            
                   

D

   (14) 

2

2 2 2

2 2

  
D    e  +  D  a    +  (    +      -  D  b   )  C = 0  .

  t   t
T 

 

 
D D D

   
(15) 

The governing equations can be put in a more convenient 

form by using the following non-dimensional variables 

 xcx η1
*  , ucu η1

*  , tct ααη21
*  , 

0

2

1

*

0 τητ ααc , τητ αα2
1

* c , 

* 1 0
( )

2

T T


 





, 





2
C 2*




C
, *

2

P
P


 , 






2

*




ij
ij , 

where  /)2(c2
1 , k/cE . 

 Using the above non-dimensional variables 

equations (13) - (15), take the following form where we 

have dropped the asterisks for convenience  

Cθuu 2 DDD 
, (16) 

 

 Ce
t∂

∂

t∂

∂
11

1

0

2 


















D
, 

   (17) 

 

  0CCCe 2

32

2

1

2  DDD   , 

   (18) 

 where 

)( 




2c

T

E

0

2

1


 ,

21

1

2a






)( 
 ,






D

2
22


 , 

2

2

3

2b






)( 
 . 

Also equations (5b) and (8) take the form 

 Ce
xx

  , (19a) 

    ,C    -    )  
2

  -  1  ( =  = 
2zz yy 


 e  (19b) 

 
13

eCP  , (20) 

where  /)( 22  . 

The initial conditions of the problem are taken to be 

homogeneous while the boundary conditions are  

,   0 = |) t ,x  (  ,  0 = |) t ,x  (
=x  =x  

 u
h (21) 
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1 x = 0  x =

( x , t )
( x , t )  = ( t )  ,  = 0   ,| |fh

x









 (22) 

 

2 x =  x =

( x , t )
P( x , t )  = ( t )  ,  = 0   ,| |fh

C

x





 (23) 

where f1(t) and f2(t) are known functions of t .  

where f1(t) and f2(t) are known functions of t . This 

means that the upper surface is traction free and acted 

upon by two shocks. 

2.1. SOLUTION IN THE LAPLACE 

TRANSFORM DOMAIN  

 Introducing the Laplace transform defined by 

the formula 

 

dt f(t) e  = (s)f  ts 

0






, 

into equations (16)-(19) and (20) and using the 

homogeneous initial conditions, we obtain 

 
Cuus DDD  22

, (24) 

 
  Cess

1

1

0

2    D
,(25) 

 

   02

3

2

2

2

1

2  Csse DDD 
,

   (26) 

 
Ce

xx
 

, (27a) 

 

y y z z 12

2
 =  = (  1  -    )     -    C  ,e   




 (27b) 

 
3 1

P C e   

.

 (28) 

Taking the divergence of equation (24), we obtain 

2 2 22(   ) e     C = 0s   D D D . (29) 

Eliminating Cande  between equations (25), (26) and 

(29), we obtain 

6 4 2

1 2 3(    -      +      -    )   = 0 .a a a D D D
, (30) 

where 

 

  s)s()(εα)(αεα)sτ(
α

s
a

323110

3

1
11121

1
 




, 

 

  )s(s)s)((εsαsε)sτ(
α

s
a  


 1111

1
223

2

10

3

2

 

 

.   
  -  

)    s(  )   s(  s  
 = a

3

0

4

3

1

112






 

In a similar manner we can show that C and e  satisfy 

the equations 

 

.   0 =   )  a  -    a  +    a  -    ( 321 246 DDD
, 

   (31) 

 

6 4 2

1 2 3(   -      +      -    )   = 0  .a a a CD D D
  (32) 

Equation (30) can be factorized as 

 

2 2 22 2 2

1 2 3(   -   )  (  -    )  (  -   )   = 0  ,k k k D D D
 (33) 

where 321 kandk,k  are the roots with positive real 

parts of the characteristic equation 

 
0

3

2

2

4

1

6  akakak
. (34) 
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The solution of Eq. 33 has the form, 

 

,    e = ) s,x  (
3

1 = i

xk

i
iA


, (35) 

where Ai  = Ai (s) are parameters depending on s 

only.Similarly, the solution of Eqs. 31 and 32 can be 

written as 

 

e = )(x,  '
3

1 = i

xk

i
iAse 

, (36) 

 

e = )(x,  "
3

1 = i

xk

i
iAsC 

, (37) 

where Ai'' are parameters depending only on s. 

Substituting from equations (35)-(37) into equations (25), 

(26) and (29), we get 

 

   A  
] s    - k)  ([ ) s  +  s(

)] s  +  s(  )  (    k[  k
 =A i2

11

2

i0

02

2

i

2

i'

i















1

1
1

1

   (38 ) 

 

2 1 2 14 2

i i 0 0"

i
1 22

i0 1 1

 -   [   ( 1)  (s +    ) ] +    (  +      )s s s sk k
 =    .

( s +   ) [(1   )  -     ]s sk
i

s
A A

 



  

   

 



 


 

   (39) 

We thus have 

 ee
] s    - k)  ([ ) s  +  s(

)] s  +  s(  )  (    k[  k
 = ) s ,x (e xk

i

xk

i2

11

2

i0

02

2

i

2

i
3

1 =i 

ii  B A  

















1

1
1

1

,  

 (40) 

2 1 2 14 2
3

i i 0 0

1 22
i = 1

i0 1 1

 -   [   ( 1)  ( s +      )]  +    (  +     )s s s sk k
( x ,s ) =    e

( s +   ) [(1   )  -     ]s sk

ik x

i

s
C A

 



  

   

 





 




.      

   (41) 

Integrating both sides of equation (7) from x to infinity, 

and assuming that u vanishes at infinity, we obtain upon 

using the relation (40) 

 e  
] )[( ) s  + s (

)] s  + s ( ) (  [ 
  = s)(x,  

3

1 = i

xk
i2

1

2

i1
1

0

1
01

2

ii iA
sk1

1kk
u 










.   (42) 

 Substituting from equations (35), (40) and (41) 

into equations (27a) and (28), we get 

 e  
] )[( 

)] s  + s ( ) (  [
 

)  +  (
= s)(x,  

3

1 = i

xk
i2

1

2

i1

1
01

2

i

0

xx
iA

sk1

1k

s1

s 







 

   (43) 

 e  
] )[( 

)  s    +   (  s  +  ]  )  s    +  s  (  )(    s  [  k  -  k
 

) s +  (

) s +  (
= s)(x,  00

22
i

4
i

3

1 = i

xk
i2

1

2

i1

121

0

2
xx iA

sk1

s1

1

1
P 



 








.

   (44) 

In order to evaluate the unknown parameters A1, A2 and 

A3, we shall use the Laplace transform of the boundary 

conditions (21)-(23) together with equations (35), (43) 

and (44). We thus arrive at the following set of linear 

equations 

0
sk1

1k
Ai2

1
2
i1

1
01

2
i 



 

    
] )[( 

)] s  + s ( ) (  [
 

3

1 = i , 

   (45) 

,    ) s (  f=  1

3

1 = i
Ai

 (46) 

. 

)     +   (

)  s   + () s (f =

 
] )[(k

] )s  +  (ss + ) ) s  + (s  1) +  ( + s (  k- k  [
  

02

2
i

00
22

i
4
i

3

1 = i

s1

1

sk1

2

i2

1

2

i1

121

A















 

   (47) 

 

 Solving the linear system of equations (45)-

(47), we can obtain the parameters A1-A3.This completes 

the solution of the problem in the Laplace transform 

domain. 

INVERSION OF Laplace Transform 

 We shall now outline the numerical inversion 

method used to find the solution in the physical 

domain. Let )s,x(f  be the  Laplace transform of a function f(x, t). First, we use the inversion formula of the  Laplace transform expression )s,x(f of the form[22] 
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ic

ic

st ds)s,x(fe
i

)t,x(f
2

1

 

where c is an arbitrary real number greater than all the 

real parts of the singularities of  (s)f . Taking  s = c + 

iy, the above integral takes the form  

 





 dyiycxfe
π

e
txf ity

ct

),(
2

),(

  . 

Expanding the function h(x,y,t) = exp(-ct)f(x, t)  in a 

Fourier series in the interval [0,2T], we obtain the 

approximate formula [23] 

 DEtxftxf   ),(),(
, 

where  

 

 20for       ),(),(),(
1

02
1 Tttxctxctxf

k
k  






, 

   (48) 

and  

 
,....2,1,0)],/,(Re[ /  kTπikdxfe

T

dte

k
c Ttπik

 

  (49) 

ED, the discretization error, can be made arbitrarily 

small by choosing d large enough [15]. Since the 

infinite series in equation (48) can only be summed up 

to a finite number  N of terms, the approximate value 

of  f(x, t) becomes 

 

 20for       
1

02
1 Ttcc)t,x(f

N

k
kN

 
  (50) 

Using the above formula to evaluate f(x, t), we 

introduce a truncation error ET that must be added to 

the discretization error to produce the total 

approximation error. 

 Two methods are used to reduce the total 

error. First, the “Korrecktur” method is used to reduce 

the discretization error. Next, the -algorithm is used to 

reduce the truncation error and hence to accelerate 

convergence. 

       The Korrecktur method uses the following formula 

to evaluate the function f(x, t) : 

 D
cT EtTxfetxftxf  


 )2,(),(),( 2

,      

where the discretization errors DD EE  [23]. 

Thus, the approximate value of f(x, t) becomes  

 
)2,(),(),( 2 tTxfetxftxf N

cT
NNK  



 ,(51) 

N´ is an integer such that N´ < N. 

         We shall now describe the -algorithm that is 

used to accelerate the convergence of the series in 

equation (53). Let N=2q+1 where q is a natural 

number, and let  

 




m

1k
km cs

 

be the sequence of partial sums of equation (50). We 

define the -sequence by  

 mm,1m,0 s,0 
 

and  

 p+1,m = p-1,m+1 + 1/ (p,m+1-p,m)     ,  

p=1,2,3,... 

It can be shown that [23], the sequence 

 1,1 , 3,1 , 5,1 ,  ... , N,1  

converges to f( ,x t) + ED  - c0/2 faster than the 

sequence of partial sums 

 sm , m = 1,2,3,... 

The actual procedure used to invert the Laplace 

transforms consists of using equation (54) together 
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with the -algorithm. The values of c and T are chosen according to the criteria outlined in [23]. 

3. NUMERICAL RESULTS 

For the purpose of numerical illustration, the 

problem was solved for the following choice of 

the functions f1 (t ) and f2 (t ): 

f1 (t ) = θ0 H (t ), 

f2 (t ) = P0 H (t ), 

where θ0 and P0 are constants and H (t ) is the 

Heaviside unit step function. 

We, thus, have 

s

θ0
1  (s) f 

 

s

P0
2  (s) f    

The roots k1 , k2 , and k3 of the characteristic 

equation are given by 

]a + q sin p [2
3

1
11

k
 , 

] ) q sin  cosq3p(-[a
3

1
12

k
, 

] ) q sin  cosq3p([a
3

1
13

k
 

)3a-[(a 2
2
1p

,
,

3

)(sin 1 r
q




and 

,
2

2792
3

321
3
1

p

aaaa
r




 

Copper material was chosen for purposes of 

numerical evaluations. The material constants of 

the problem are thus given by in SI units [24]  

T0 = 293 K, ρ = 8,954 kg.m
-3

, τ0 =0.0 2s, τ =0 

.2s,  cE = 383.1 J. kg 
-1

. K 
-1

, αt =1 .7 8× 10 
-5

 K
-1

 , 

k = 386 W· m 
−1

· K
-1

 , λ =7 .7 6× 10
10

 kg · m 
-1

. s 
-2

 , µ =3. 8 6×10
10

 kg · m 
-1

.s 
-2

, α c =1 .9 8× 10 
-4

 

m 
3
. kg 

-1
, d =0.8 5× 10 

-8
 kg.s.m

-3
,  a =1.2×10

4
 

m
2
.s 

-2
.K 

-1
, b =0.9× 10

6
 m 5· kg 

-1
. s 

-2
. 

Using these values, it was found that 

η = 8886.73, ε = 0.0168, β
2
 = 4, α1 = 5.43, α2 = 

0.533, and α3 = 36.24. 

 

Figure 1   Displacement with all values of 

 

 

Figure 2   Displacement distribution for three values of 

 =0.0,  =0.5 and  =1.0.
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Figure 3   the difference between displacement 

distributions at values of  =0.0 and  =1.0

 

 

Figure 4   Temperature distribution with all values of 

 

 

Figure 5   Temperature distribution for three values of 

 =0.0,  =0.5 and  =1.0.

 

 

Figure 6   the difference between Temperature 

distribution at values of  =0.0 and  =1.0

 

 

Figure 7 Stress Distribution with all values of 

 

 

Figure 8 Stress Distribution for three values of  =0.0, 

 =0.5 and  =1.0. 
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Figure 9   the difference between stress distribution at 

values of  =0.0 and  =1.0

 

 

Figure 10  Concentration distribution  all t values of  

 

Figure 11  Concentration distribution at values of  =0.0 

and  =1.0 

 

Figure 12   the difference between Concentration 

distribution at values of  =0.0 and  =1.0 

 

Figure 13 Chemical Potential distribution a all t values of 

  

 

Figure 14 Chemical Potential distribution at values of  

=0.0 and  =1.0 

 

Figure 15   the difference between Chemical Potential 

distribution at values of  =0.0 and  =1.0 
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Figure 16 Chemical Potential distribution at values of  

=0.0 and  =1.0 

 

Figure 17 Chemical Potential distribution a all t values of 

  

 

Figure 18   the difference between Chemical Potential at 

values of  =0.0 and  =1.0 

 

 

Figure 19 Strain distribution a all t values of  

 

Figure 20 Strain distribution at values of  =0.0 and  

=1.0 

 

Figure 21   the difference between Strain distribution at 

values of  =0.0 and  =1.0 

It should be noted that a unit of dimensionless 

time corresponds to 6.5 × 10−12 s, while a unit 

of dimensionless length corresponds to 2.7 × 

10−8 m. 

The computations were carried out for one 

value of time t = 0.1 and many values of  , from 
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0.0 to 1.0 especially two values of alpha  = 1 

(corresponding to LordShulman theory) and  = 

0.5. The numerical method outlined above was 

used to obtain the inverse Laplace transforms for 

the temperature, displacement and stress 

distributions. Fortran programming language 

was used on a personal computer. The accuracy 

maintained was 5 significant digits for both the 

numerical integration and the inversion of the 

Laplace transform. 

The displacement, temperature, stress, 

concentration, chemical potential, and strain are 

shown in Figs. 1-3, 4-6, 7-9, 10-12,  13-18, and 

19-21respectively.As expected from the order of 

the partial differential equation, we have three 

waves emanating from each surface; the fronts of 

these waves are depicted in the figures as picks 

in the functions . 

We can see in all figures that, all the functions 

considered have a non-zero value only in a 

bounded region of space and vanish identically 

outside this region. This region expands with the 

passage of time. Also, our results are the sam as 

As was mentioned by Sherief in [14] when  = 

1.0 , we here mentioned about the variation of  

, from 0.0 to 1.0.  

The displacement component u is shown in 

Fig. 1, for all values of  while fig. 2, show the 

difference between displacements at =0.0 and 

=1.0. It is clear that difference maintained was 

7 significant digits, i.e the effect values of  are 

very weak, and we can see also in Fig.3 when, 

we choose three values of ( = 0.0,  = 0.5and 

 = 1), the same coclusions are in temperature is 

shown in Figs. 4 to 6 , the stress component σxx  

in Figs. 7 to 9, chemical Concentration Figs. 10 

to 12, and strain Figs. 19 to 21. But we note that 

in chemical potential Figs. 13 to 18  the  effect 

for values of  maintained was 4 significant 

digits only . 

We can say that, for  = 1 the solution is that 

of the generalized theory of thermoelasticity and 

exhibits the phenomenon of finite speeds of 

propagation of waves. The question of whether 

the solution for   < 1 behaves similarly or not is 

still an open question. 

As was mentioned by Povstenko [17] ‘‘From 

numerical calculations, it is difficult to say 

whether the solution for a approaching 1 has a 

jump at the wave front or it is continuous with 

very fast changes. This aspect invites further 

investigation’’. Our calculations show that up to 

the specified accuracy, the solution seems to be 

non-zero only in a finite region of space. 

The problem was solved for many values of  

< 1. The solutions seem to be of the same shape 

as that of  = 0.5 reported here. The difference is 

that as a decreases the region where the solution 

is non-zero becomes larger indicating faster 

speed of propagation. It is known that for  = 0, 

the solution is that of the coupled theory of 

thermoelasticity where the speed of propagation 

of the waves is infinite. 
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