A half-space problem in the theory of fractional order thermoelasticity with diffusion.

1,2Moustafa M. Salama, 1,3A.M. Kozae, 1M. A. Elsafty, 1,3S.S. Abelaziz

Abstract

We consider in this work the problem of thermoelastic half-space with a permeating substance in contact with the bounding plane by employing the fractional order theory of thermoelasticity, the bounding surface of the halfspace is taken to be traction free and subjected to a time dependent thermal shock. The chemical potential is also assumed to be a known function of time on the bounding plane. for the inversion of the Laplace transform based on Fourier expansion techniques. The temperature, displacement, stress, and concentration as well as the chemical potential are obtained. Numerical computations are carried out and represented graphically.

Index Terms—Generalized thermoelasticity, Thermal shock, Thermoelastic diffusion, fractional order thermoelasticity, diffusion.

1. Introduction

Biot [1] developed the coupled theory of thermoelasticity to deal with a defect of the uncoupled theory that mechanical causes have no effect on the temperature. However, this theory shares a defect of the uncoupled theory in that it predicts infinite speeds of propagation for heat waves.

Lord and Shulman [2] introduced the theory of generalized thermoelasticity with one relaxation time for the special case of an isotropic body. This theory was extended by Dhaliwal and Sherief [3] to include the anisotropic case. In this theory, a modified law of heat conduction including both the heat flux and its time derivative replaces the conventional Fourier's law. The heat equation associated with this theory is
hyperbolic and hence eliminates the paradox of infinite speeds of propagation inherent in both the uncoupled and coupled theories of thermoelasticity. For this theory, Ignaczak [4] studied uniqueness of solution; Sherief [5] proved uniqueness and stability. Anwar and Sherief [6] and Sherief [7] developed the state-space approach to this theory. Anwar and Sherief [8] completed the integral equation formulation. Sherief and Hamza [9, 10] solved some twodimensional problems and studied wave propagation. Sherief and El-Maghraby [11, 12] solved two crack problems. Sherief [13] solved thermoelastic half-space with a permeating substance in contact with the bounding plane in the context of the theory of

[^0]generalized thermoelastic diffusion with one relaxation time.

El-Maghraby [14-16] solved some twodimensional problems for media affected by heat sources and body forces.

Diffusion can be defined as the random walk, of an ensemble of particles, from regions of high concentration to regions of lower concentration. There is now a great deal of interest in the
study of this phenomenon, due to its many applications in geophysics and industrial applications. In integrated circuit fabrication, diffusion is used to introduce "dopants" in controlled amounts into the semiconductor substrate. In particular, diffusion is used to form the base and emitter in bipolar transistors, form integrated resistors, and form the source/drain regions in MOS transistors and dope poly-silicon gates in MOS transistors. In most of these applications, the concentration is calculated using what is known as Fick's law. This is a simple law that does not take into consideration the mutual interaction between the introduced substance and the medium into which it is introduced or the effect of the temperature on this interaction.

Nowacki [17-20] developed the theory of thermoelastic diffusion. In this theory, the coupled thermoelastic model is used. This implies infinite speeds of propagation of thermoelastic waves. Recently, Sherief et al. [21] developed the theory of generalized thermoelastic diffusion that predicts finite speeds of propagation for thermoelastic and diffusive waves.

Fractional calculus has been used successfully to modify many existing models of physical processes. The first application of fractional derivatives was given by Abel who applied fractional calculus in the solution of an integral equation that arises in the formulation of
the tautochrone problem. One can state that the whole theory of fractional derivatives and integrals was established in the 2nd half of the 19th century. Caputo and Mainardi [22-25] found good agreement with experimental results when using fractional derivatives for description of viscoelastic materials and established the connection between fractional derivatives and the theory of linear viscoelasticity. Right now there are five different generalizations of the coupled theory of thermoelasticity the details can be found in Hetnarski and Ignaczak [26]. All five theories are based on assumptions of one kind or another. Also, all these theories model the problem of heat conductions in solids as a purely wave propagation phenomenon. Povstenko [13] made a review of thermoelasticity that uses fractional heat conduction equation. The theory of
thermal stresses based on the heat conduction equation with the Caputo time-fractional derivative is used by Povstenko [27] to investigate thermal stresses in an infinite body with a circular cylindrical hole. Povstenko proposed and investigated new models that use fractional derivative in [28,30]. Sherief et al. [31] developed a new theory of thermoelasticity is derived using the methodology of fractional calculus, proved a uniqueness theorem and derived a reciprocity relation and a variational principle. The theories of coupled thermoelasticity and of generalized thermoelasticity with one relaxation time follow as limit cases. A uniqueness theorem for this model is proved. A variational principle and a reciprocity theorem are derived.

Sherief and Abd El-Latief [32]applied the fractional order theory of thermoelasticity to a 2 D problem for a half-space.

2. Formulation of The Problem

We consider the problem of an isotropic
thermoelastic half-space ($\mathrm{x} \geq 0$) with a permeating substance (such as a gas) in contact with the upper plane of the half-space $(x=0)$. The x-axis is taken perpendicular to the upper plane pointing inwards. This upper plane of the half-space is taken to be traction free and is subjected to a time- dependent thermal shock. The chemical potential is also assumed to be a known function of time on the upper plane. All considered functions are assumed to be bounded and vanish as $\mathrm{x} \rightarrow \infty$.

The equation of motion in the absence of body forces is given by [22]
$\rho \ddot{\mathrm{u}}_{\mathrm{i}}=\mu \mathrm{u}_{\mathrm{i}, \mathrm{j} \mathrm{j}}+(\lambda+\mu) \mathrm{u}_{\mathrm{j}, \mathrm{i} \mathrm{j}}-\beta_{1} \theta, \mathrm{i}-\beta_{2} \mathrm{C}, \mathrm{i}$.
where ui are the components of the displacement vector, T is the absolute temperature, C is the concentration of the diffusive material in the elastic body, λ, μ are Lamé's constants, ρ is the density, and β_{1} and β_{2} are the material constants given by

$$
\beta 1=(3 \lambda+2 \mu) \alpha \mathrm{t} \text { and } \beta 2=(3 \lambda+2 \mu) \alpha \mathrm{c},
$$

α_{t} is the coefficient of linear thermal expansion, and α_{c} is the coefficient of linear diffusion expansion.

The energy equation has the form [21] and it can be written in fraction order as:

$$
\begin{equation*}
\mathrm{k} \mathscr{O}^{2} \mathrm{~T}=\rho_{\mathrm{C}_{\mathrm{E}}}\left(\frac{\partial T}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} T}{\partial \mathrm{t}^{1+\alpha}}\right)+\beta_{\mathrm{I}} \mathrm{~T}_{\mathrm{o}}\left(\frac{\partial e}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} e}{\partial \mathrm{t}^{1+\alpha}}\right)+\mathrm{aT}_{0}\left(\frac{\partial C}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} C}{\partial \mathrm{t}^{1+\alpha}}\right), \tag{2}
\end{equation*}
$$

where k is the thermal conductivity, $0 \leq \alpha \leq 1, c E$ is the specific heat at constant strain, τ_{0} is the thermal relaxation time, ' a ' is a measure of the thermodiffusion effect, T_{0} is a reference temperature
assumed to obey the inequality $\left|\left(T-T_{0}\right) / T_{0}\right| \ll 1$ and e_{ij} are the components of the strain tensor given by

$$
\mathrm{e}_{\mathrm{ij}}=\frac{1}{2}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}+\mathrm{u}_{\mathrm{j}, \mathrm{i}}\right)
$$

The diffusion equation has the form Sherief et al (2004)
$\mathrm{D} \beta_{2} \mathrm{e}_{\mathrm{kk}, \mathrm{ii}}+\mathrm{DaT},{ }_{\mathrm{ii}}+\dot{\mathrm{C}}+\tau \ddot{\mathrm{C}}-\mathrm{DbC}, \mathrm{ii}=0$,
where D is the diffusion coefficient, b is a measure of diffusive effect and τ is the diffusion relaxation time.

The constitutive equations have the form Sherief et al (2004)

$$
\left.\sigma_{\mathrm{ij}}=2 \mu \mathrm{e}_{\mathrm{ij}}+\delta_{\mathrm{ij}} \mid \lambda \mathrm{e}_{\mathrm{kk}}-\beta_{1}\left(\mathrm{~T}-\mathrm{T}_{0}\right)-\beta_{2} \mathrm{C}\right\rfloor
$$

$$
\begin{equation*}
P=-\beta_{1} e_{k k}+b C-a\left(T-T_{0}\right) \tag{5a}
\end{equation*}
$$

where σ_{ij} are the components of the stress tensor and P is the chemical potential.

It follows from the description of the problem that all considered functions will depend on x and t only. We thus obtain the displacement components of the form,

$$
\mathrm{u}_{\mathrm{x}}=\mathrm{u}(\mathrm{x}, \mathrm{t}), \mathrm{u}_{\mathrm{y}}=\mathrm{u}_{\mathrm{z}}=0 .
$$

The strain components are given by

$$
\mathrm{e}_{\mathrm{xx}}=O x u, \mathrm{e}_{\mathrm{y} \mathrm{y}}=\mathrm{e}_{\mathrm{zz}}=\mathrm{e}_{\mathrm{xy}}=\mathrm{e}_{\mathrm{yz}}=\mathrm{e}_{\mathrm{zx}}=0
$$

where $=\frac{\partial}{\partial x}$

The cubical dilatation $\mathrm{e}=\mathrm{e}_{\mathrm{kk}}$ is equal to

$$
e=O u .
$$

From equation (5a), it follows that the stress tensor components have the form

$$
\sigma=\sigma_{x x}=(\lambda+2 \mu) \mathscr{O} \mathbf{u}-\beta_{1} \theta-\beta_{2} \mathbf{C}
$$

$\sigma_{\mathrm{y} y}=\sigma_{\mathrm{z} \mathrm{z}}=\lambda$ On $\mathrm{u}-\beta_{1} \theta-\beta_{2} \mathrm{C}$,
$\sigma_{x y}=\sigma_{z y}=\sigma_{x z}=0$

Equations (1), (2) and (4) thus reduce to

$$
\begin{gather*}
\rho \ddot{\mathrm{u}}=\mu \mathscr{D}^{2} \mathrm{u}+(\lambda+\mu) \mathscr{D} \mathrm{e}-\beta_{1} \mathscr{O} \mathrm{~T}-\beta_{2} \mathscr{D} \mathrm{C},(10) \\
\mathrm{k} \mathscr{D}^{2} \mathrm{~T}=\mathrm{c}_{\mathrm{E}}\left(\frac{\partial T}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} T}{\partial \mathrm{t}}\right)+\beta_{1} \mathrm{~T}_{0}\left(\frac{\partial e}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} e}{\partial \mathrm{t}}\right)+\mathrm{a}_{0}\left(\frac{\partial C}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} \mathrm{C}}{\partial \mathrm{t}}\right), \tag{11}
\end{gather*}
$$

$\mathrm{D} \beta_{2} \mathscr{O}^{2} \mathrm{e}+\mathrm{D} \mathrm{a} \mathscr{O}^{2} \mathrm{~T}+\dot{\mathrm{C}}+\tau \ddot{\mathrm{C}}-\mathrm{Db} O^{2} \mathrm{C}=0$.

By using equation (7), equations (10) - (12) can be written as

$$
\begin{equation*}
\rho \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}=(\lambda+2 \mu) \mathscr{O} \mathrm{e}-\beta_{1} O T-\beta_{2} C, \tag{13}
\end{equation*}
$$

$\mathrm{k} \mathscr{D}^{2} \mathrm{~T}=\rho_{\mathrm{C}_{\mathrm{E}}}\left(\frac{\partial T}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} T}{\partial \mathrm{t}^{1+\alpha}}\right)+\beta_{1} \mathrm{~T}_{0}\left(\frac{\partial e}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} e}{\partial \mathrm{t}^{1+\alpha}}\right)+\mathrm{aT}_{0}\left(\frac{\partial C}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha} C}{\partial \mathrm{t}^{1+\alpha}}\right)$,
$\mathrm{D} \beta_{2} \mathscr{O}^{2} \mathrm{e}+\mathrm{D}$ a $\mathscr{O}^{2} T+\left(\frac{\partial}{\partial \mathrm{t}}+\tau \frac{\partial^{2}}{\partial \mathrm{t}^{2}}-\mathrm{D} \mathrm{b} \mathscr{Q}^{2}\right) \mathrm{C}=0$.

The governing equations can be put in a more convenient form by using the following non-dimensional variables

$$
\begin{aligned}
& x^{*}=c_{1} \eta x, \quad u^{*}=c_{1} \eta u, \quad t^{*}=c_{1}^{2 a} \eta^{\alpha} t \\
& \tau_{0}^{*}=c_{1}^{2 a} \eta^{\alpha} \tau_{0}, \tau^{*}=c_{1}^{2 a} \eta^{\alpha} \tau
\end{aligned}
$$

$\theta^{*}=\frac{\beta_{1}\left(T-T_{0}\right)}{\lambda+2 \mu}, \mathrm{C}^{*}=\frac{\beta_{2} C}{\lambda+2 \mu}, P^{*}=\frac{P}{\beta_{2}}, \sigma_{i j}^{*}=\frac{\sigma_{i j}}{\lambda+2 \mu}$,
where $\quad c_{1}^{2}=(\lambda+2 \mu) / \rho, \eta=\rho c_{E}^{(8 \rho k}$.
Using the above non-dimershonal variables equations (13) - (15), take the following form where we have dropped the asterisks for convenience

$$
\begin{align*}
& \ddot{\mathrm{u}}=O^{2} \mathrm{u}-O \hat{O} \theta-O \mathrm{C} \tag{16}\\
& O_{2}^{2} \theta=\left(\frac{\partial}{\partial \mathrm{t}}+\tau_{0} \frac{\partial^{1+\alpha}}{\partial \mathrm{t}^{1+\alpha}}\right)\left(\theta+\varepsilon \mathrm{e}+\varepsilon \alpha_{1} \mathrm{C}\right) \tag{17}
\end{align*}
$$

$$
\begin{equation*}
O^{2} \mathrm{e}+\alpha_{1} \mathscr{X}^{2} \theta+\alpha_{2}(\dot{\mathrm{C}}+\tau \ddot{\mathrm{C}})-\alpha_{3} \mathscr{O}^{2} \mathrm{C}=0 \tag{18}
\end{equation*}
$$

where

$$
\varepsilon=\frac{\beta_{1}^{2} \mathrm{~T}_{0}}{\rho \mathrm{c}_{\mathrm{E}}(\lambda+2 \mu)}, \alpha_{1}=\frac{\mathrm{a}(\lambda+2 \mu)}{\beta_{1} \beta_{2}}
$$

$$
\alpha_{2}=\frac{\lambda+2 \mu}{\beta^{2} \mathrm{D} \eta}, \alpha_{3}=\frac{\mathrm{b}(\lambda+2 \mu)}{\beta_{2}^{2}}
$$

Also equations (5b) and (8) take the form

$$
\begin{aligned}
& \sigma_{x x}=\mathrm{e}-\theta-\mathrm{C} \\
& \sigma_{y y}=\sigma_{z z}=\left(1-\frac{2}{\beta^{2}}\right) \mathrm{e}-\theta-C \\
& \mathrm{P}=\alpha_{3} \mathrm{C}-\mathrm{e}-\alpha_{1} \theta
\end{aligned}
$$

where $\beta^{2}=(\lambda+2 \mu) / \mu$.
The initial conditions of the problem are taken to be homogeneous while the boundary conditions are

$$
\left.\sigma(\mathrm{x}, \mathrm{t})\right|_{\mathrm{x}=\mathrm{h}}=0,\left.\mathrm{u}(\mathrm{x}, \mathrm{t})\right|_{\mathrm{x}=\infty}=0
$$

$$
\begin{align*}
& \left.\theta(\mathrm{x}, \mathrm{t})\right|_{\mathrm{x}=0} h=\mathrm{f}_{1}(\mathrm{t}),\left.\frac{\partial \theta(\mathrm{x}, \mathrm{t})}{\partial x}\right|_{\mathrm{x}=\mathrm{x}}=0 \tag{22}\\
& \left.\mathrm{P}(\mathrm{x}, \mathrm{t})\right|_{\mathrm{x}=n}=\mathrm{f}_{2}(\mathrm{t}),\left.\frac{\partial C(\mathrm{x}, \mathrm{t})}{\partial x}\right|_{\mathrm{x}=\infty}=0, \tag{23}
\end{align*}
$$

where $f_{1}(t)$ and $f_{2}(t)$ are known functions of t.
where $f_{1}(t)$ and $f_{2}(t)$ are known functions of t. This means that the upper surface is traction free and acted upon by two shocks.

2.1. SOLUTION IN THE LAPLACE
 TRANSFORM DOMAIN

Introducing the Laplace transform defined by the formula

$$
\overline{\mathrm{f}}(\mathrm{~s})=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{st}} \mathrm{f}(\mathrm{t}) \mathrm{dt}
$$

into equations (16)-(19) and (20) and using the homogeneous initial conditions, we obtain

$$
\begin{gather*}
s^{2} \bar{u}=\mathscr{O}^{2} \bar{u}-\mathscr{O} \bar{\theta}-\mathscr{O} \bar{C}, \tag{24}\\
\mathscr{O}^{2} \bar{\theta}=\left(s+\tau_{0} s^{1+\alpha}\right)\left[\bar{\theta}+\varepsilon \bar{e}+\varepsilon \alpha_{1} \bar{C}\right]_{,(25)} \tag{25}\\
\mathscr{O}^{2} \bar{e}+\alpha_{1} \mathscr{O}^{2} \bar{\theta}+\left[\alpha_{2}\left(s+\tau s^{2}\right)-\alpha_{3} \mathscr{O}^{2}\right] \bar{C}=0,
\end{gather*}
$$

$$
\begin{equation*}
\bar{\sigma}_{x x}=\bar{e}-\bar{\theta}-\bar{C} \tag{26}
\end{equation*}
$$

$$
\sigma_{y y}=\sigma_{z z}=\left(1-\frac{2}{\beta^{2}}\right) e-\theta-\alpha_{1} \mathrm{C},
$$

$$
\begin{equation*}
\bar{P}=\alpha_{3} \bar{C}-\bar{e}-\alpha_{1} \bar{\theta} \tag{27b}
\end{equation*}
$$

Taking the divergence of equation (24), we obtain

$$
\begin{equation*}
\left(\mathscr{O}^{2}-\mathrm{s}^{2}\right) \overline{\mathrm{e}}-\mathscr{O}^{2} \bar{\theta}-\mathscr{O}^{2} \overline{\mathrm{C}}=0 . \tag{299}
\end{equation*}
$$

Eliminating $\overline{\mathrm{e}}$ and $\overline{\mathrm{C}}$ between equations (25), (26) and (29), we obtain

$$
\begin{equation*}
\left(\mathscr{R}^{6}-\mathrm{a}_{1} \mathscr{R}^{4}+\mathrm{a}_{2} \mathscr{R}^{2}-\mathrm{a}_{3}\right) \bar{\theta}=0 . \tag{30}
\end{equation*}
$$

where

$$
a_{1}=\frac{s}{\alpha_{3}-1}\left[\left(1+\tau_{0} s^{\alpha}\right)\left(\alpha_{1} \varepsilon\left(\alpha_{1}+2\right)+\alpha_{3}(\varepsilon+1)-1\right)+\alpha_{2}(1+\tau s)+\alpha_{3} s\right]
$$

$$
a_{2}=\frac{s}{\alpha_{3}-1}\left[\left(1+\tau_{0} s^{\alpha}\right)\left(\varepsilon s \alpha_{1}^{2}+\alpha_{3} s+\alpha_{2}(\varepsilon+1)(1+\tau s)\right)+\alpha_{2} s(1+\tau s)\right]
$$

$$
a_{3}=\frac{s^{4} \alpha_{2}(1+s \tau)\left(1+s^{\alpha} \tau_{0}\right)}{\alpha_{3}-1}
$$

In a similar manner we can show that $\overline{\mathrm{e}}$ and $\overline{\mathrm{C}}$ satisfy the equations

$$
\begin{align*}
& \left(\mathscr{Q}^{6}-a_{1} \mathscr{O}^{4}+a_{2} \mathscr{Q}^{2}-a_{3}\right) \bar{\theta}=0 . \\
& \left(\mathscr{Q}^{6}-\mathrm{a}_{1} \mathscr{Q}^{4}+\mathrm{a}_{2} \mathscr{O}^{2}-\mathrm{a}_{3}\right) \bar{C}=0 . \tag{31}
\end{align*}
$$

Equation (30) can be factorized as

$$
\begin{equation*}
\left(\mathscr{Q}^{2}-\mathrm{k}_{1}^{2}\right)\left(\mathscr{D}^{2}-\mathrm{k}_{2}^{2}\right)\left(\mathscr{Q}^{2}-\mathrm{k}_{3}^{2}\right) \bar{\theta}=0, \tag{33}
\end{equation*}
$$

where $\mathrm{k}_{1}, \mathrm{k}_{2}$ and k_{3} are the roots with positive real parts of the characteristic equation

$$
\begin{equation*}
k^{6}-a_{1} k^{4}+a_{2} k^{2}-a_{3}=0 \tag{34}
\end{equation*}
$$

The solution of Eq. 33 has the form,

$$
\begin{equation*}
\bar{\theta}(\mathrm{x}, \mathrm{~s})=\sum_{\mathrm{i}=1}^{3} \mathrm{~A}_{\mathrm{i}} \mathrm{e}^{-\mathrm{k}_{\mathrm{i}} \mathrm{x}} \tag{35}
\end{equation*}
$$

where $A_{i}=A_{i}(s)$ are parameters depending on s only.Similarly, the solution of Eqs. 31 and 32 can be written as

$$
\begin{align*}
& \overline{\mathrm{e}}(\mathrm{x}, \mathrm{~s})=\sum_{\mathrm{i}=1}^{3} \mathrm{~A}_{\mathrm{i}}^{\prime} \mathrm{e}^{-\mathrm{k}_{\mathrm{i}} \mathrm{x}} \tag{36}\\
& \overline{\mathrm{C}}(\mathrm{x}, \mathrm{~s})=\sum_{\mathrm{i}=1}^{3} \mathrm{~A}_{\mathrm{i}}^{\prime \prime} \mathrm{e}^{-\mathrm{k}_{\mathrm{i}} \mathrm{x}}, \tag{37}
\end{align*}
$$

where A_{i} " are parameters depending only on s.
Substituting from equations (35)-(37) into equations (25), (26) and (29), we get

$$
\begin{equation*}
A_{i}^{\prime}=\frac{k_{i}^{2}\left[k_{i}^{2}-\left(1-\varepsilon \alpha_{2}\right)\left(s+\tau_{0} s^{1+\alpha}\right)\right]}{\varepsilon\left(s+\tau_{0} s^{1+\alpha}\right)\left[\left(1+\alpha_{1}\right) k_{i}^{2}-\alpha_{1} s^{2}\right]} A_{i} \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
A_{i}^{\prime \prime}=\frac{\mathrm{k}_{\mathrm{i}}^{4}-\mathrm{k}_{\mathrm{i}}^{2}\left[\mathrm{~s}^{2}+(\varepsilon+1)\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\right]+\mathrm{s}^{2}\left(s+\tau_{0} \mathrm{~s}^{1+\alpha}\right)}{\varepsilon\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\left[\left(1+\alpha_{1}\right) \mathrm{k}_{\mathrm{i}}^{2}-\alpha_{1} \mathrm{~s}^{2}\right]} A_{\mathrm{i}} \tag{39}
\end{equation*}
$$

We thus have
$\bar{e}(x, s)=\sum_{i=1}^{3} \frac{k_{i}^{2}\left[k_{i}^{2}-\left(1-\varepsilon \alpha_{2}\right)\left(s+\tau_{o} s^{1+\alpha}\right)\right]}{\varepsilon\left(s+\tau_{0} s^{1+\alpha}\right)\left[\left(1+\alpha_{1}\right) k_{i}^{2}-\alpha_{1} s^{2}\right]}\left(A_{i} e^{-k_{i} x}+B_{i} e^{k_{i} x}\right)$
$\overline{\mathrm{u}}(\mathrm{x}, \mathrm{s})=\sum_{\mathrm{i}=1}^{3} \frac{\mathrm{k}_{\mathrm{i}}\left[\mathrm{k}_{\mathrm{i}}^{2}-\left(1-\varepsilon \alpha_{1}\right)\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\right]}{\varepsilon\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\left[\left(1+\alpha_{1}\right) \mathrm{k}_{\mathrm{i}}^{2}-\alpha_{1} \mathrm{~s}^{2}\right]}\left(-\mathrm{A}_{\mathrm{i}} \mathrm{e}^{-\mathrm{k}_{\mathrm{i}} \mathrm{x}}\right)$

Substituting from equations (35), (40) and (41) into equations (27a) and (28), we get

$$
\begin{equation*}
\bar{\sigma}_{x x}(\mathrm{x}, \mathrm{~s})=\frac{\mathrm{s}}{\varepsilon\left(1+\tau_{0} \mathrm{~s}\right)} \sum_{\mathrm{i}=1}^{3} \frac{\left[\mathrm{k}_{\mathrm{i}}^{2}-\left(1-\varepsilon \alpha_{1}\right)\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\right]}{\left[\left(1+\alpha_{1}\right) \mathrm{k}_{\mathrm{i}}^{2}-\alpha_{1} \mathrm{~s}^{2}\right]}\left(\mathrm{A}_{\mathrm{i}} \mathrm{e}^{-\mathrm{k}_{\mathrm{i}} \mathrm{x}}\right) \tag{43}
\end{equation*}
$$

$\overline{\mathrm{P}}_{\mathrm{xx}}(\mathrm{x}, \mathrm{s})=\frac{\alpha_{2}\left(1+\tau_{\mathrm{s}}\right)}{\varepsilon\left(1+\tau_{0} \mathrm{~s}^{\alpha}\right)} \sum_{\mathrm{i}=1}^{3} \frac{\mathrm{k}_{i}^{4}-\mathrm{k}_{\mathrm{i}}^{2}\left[\mathrm{~s}^{2}+(\varepsilon+1)\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\right]+\mathrm{s}^{2}\left(\mathrm{~s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)}{\left[\left(1+\alpha_{1}\right) \mathrm{k}_{\mathrm{i}}^{2}-\alpha_{1} \mathrm{~s}^{2}\right]}\left(\mathrm{A}_{i} \mathrm{e}^{-\mathrm{k}_{\mathrm{i}} \mathrm{x}}\right)$

In order to evaluate the unknown parameters A_{1}, A_{2} and A_{3}, we shall use the Laplace transform of the boundary conditions (21)-(23) together with equations (35), (43) and (44). We thus arrive at the following set of linear equations

$$
\begin{gather*}
\sum_{i=1}^{3} \frac{\left[\mathrm{k}_{\mathrm{i}}^{2}-\left(1-\varepsilon \alpha_{1}\right)\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\right]}{\left[\left(1+\alpha_{1}\right) \mathrm{k}_{\mathrm{i}}^{2}-\alpha_{1} \mathrm{~s}^{2}\right]} \mathrm{A}_{\mathrm{i}}=0 \tag{45}\\
\sum_{\mathrm{i}=1}^{3} \mathrm{~A}_{\mathrm{i}}=\overline{\mathrm{f}}_{1}(\mathrm{~s}), \tag{46}\\
\sum_{\mathrm{i}=1}^{3} \frac{\left[\mathrm{k}_{\mathrm{i}}^{4}-\mathrm{k}_{\mathrm{i}}^{2}\left(\mathrm{~s}^{2}+(\varepsilon+1)\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\right)+\mathrm{s}^{2}\left(\mathrm{~s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\right]}{\mathrm{k}_{\mathrm{i}}^{2}\left[\left(1+\alpha_{1}\right) \mathrm{k}_{\mathrm{i}}^{2}-\alpha_{1} \mathrm{~s}^{2}\right]} \mathrm{A}_{\mathrm{i}} \\
=\frac{\overline{\mathrm{f}}_{2}(\mathrm{~s}) \varepsilon\left(1+\tau_{0} \mathrm{~s}^{\alpha}\right)}{\alpha_{2}(1+\tau \mathrm{s})} \tag{47}
\end{gather*}
$$

$$
\bar{C}(\mathrm{x}, \mathrm{~s})=\sum_{\mathrm{i}=1}^{3} \frac{\mathrm{k}^{4}-\mathrm{k}_{\mathrm{i}}^{2}\left[\mathrm{~s}^{2}+(\varepsilon+1)\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\right]+\mathrm{s}^{2}\left(s+\tau_{0} \mathrm{~s}^{1+\alpha}\right)}{\varepsilon\left(\mathrm{s}+\tau_{0} \mathrm{~s}^{1+\alpha}\right)\left[\left(1+\alpha_{1}\right) \mathrm{k}_{i}^{2}-\alpha_{1} \mathrm{~s}^{2}\right]} \times A_{i} \mathrm{e}^{-\mathrm{s}_{\mathrm{s}} \cdot}
$$

Integrating both sides of equation (7) from x to infinity, and assuming that u vanishes at infinity, we obtain upon using the relation (40)

Solving the linear system of equations (45)(47), we can obtain the parameters $\mathrm{A}_{1}-\mathrm{A}_{3}$. This completes the solution of the problem in the Laplace transform domain.

INVERSION OF Laplace Transform

We shall now outline the numerical inversion method used to find the solution in the physical domain. Let $\bar{f}(x, s)$ be the Laplace transform of a function $\mathrm{f}(\mathrm{x}, \mathrm{t})$.

$$
f(x, t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} e^{s t} \bar{f}(x, s) d s
$$

where c is an arbitrary real number greater than all the real parts of the singularities of $\overline{\mathrm{f}}(\mathrm{s})$. Taking $\mathrm{s}=\mathrm{c}+$ iy, the above integral takes the form

$$
f(x, t)=\frac{e^{c t}}{2 \pi} \int_{-\infty}^{\infty} e^{i t y} \bar{f}(x, c+i y) d y
$$

Expanding the function $h(x, y, t)=\exp (-c t) f(x, t)$ in a Fourier series in the interval $[0,2 \mathrm{~T}]$, we obtain the approximate formula [23]

$$
f(x, t)=f_{\infty}(x, t)+E_{D}
$$

where
$f_{\infty}(x, t)=\frac{1}{2} c_{0}(x, t)+\sum_{k=1}^{\infty} c_{k}(x, t) \quad$ for $0 \leq t \leq 2 T$,
(48)
and

$$
\begin{equation*}
c_{k}=\frac{e^{d t}}{T} \operatorname{Re}\left[e^{i k \pi t / T} \bar{f}(x, d+i k \pi / T)\right], \quad k=0,1,2, \ldots \tag{49}
\end{equation*}
$$

E_{D}, the discretization error, can be made arbitrarily small by choosing d large enough [15]. Since the infinite series in equation (48) can only be summed up to a finite number N of terms, the approximate value of $f(x, t)$ becomes

$$
\begin{equation*}
f_{N}(x, t)=\frac{1}{2} c_{0}+\sum_{k=1}^{N} c_{k} \quad \text { for } 0 \leq t \leq 2 T \tag{50}
\end{equation*}
$$

Using the above formula to evaluate $f(x, t)$, we introduce a truncation error E_{T} that must be added to the discretization error to produce the total approximation error.

Two methods are used to reduce the total error. First, the "Korrecktur" method is used to reduce the discretization error. Next, the ε-algorithm is used to reduce the truncation error and hence to accelerate convergence.

The Korrecktur method uses the following formula to evaluate the function $\mathrm{f}(\mathrm{x}, \mathrm{t})$:

$$
f(x, t)=f_{\infty}(x, t)-e^{-2 c T} f_{\infty}(x, 2 T+t)+E_{D}^{\prime}
$$

where the discretization errors $\left|\mathrm{E}_{\mathrm{D}}^{\prime}\right| \ll\left|\mathrm{E}_{\mathrm{D}}\right|[23]$. Thus, the approximate value of $f(x, t)$ becomes

$$
\begin{equation*}
f_{N K}(x, t)=f_{N}(x, t)-e^{-2 c T} f_{N^{\prime}}(x, 2 T+t) \tag{51}
\end{equation*}
$$

N^{\prime} is an integer such that $\mathrm{N}^{\prime}<\mathrm{N}$.
We shall now describe the ε-algorithm that is used to accelerate the convergence of the series in equation (53). Let $N=2 q+1$ where q is a natural number, and let

$$
\mathrm{s}_{\mathrm{m}}=\sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{k}}
$$

be the sequence of partial sums of equation (50). We define the ε-sequence by

$$
\varepsilon_{0, \mathrm{~m}}=0, \varepsilon_{1, \mathrm{~m}}=\mathrm{s}_{\mathrm{m}}
$$

and

$$
\varepsilon p+1, \mathrm{~m}=\varepsilon p-1, \mathrm{~m}+1+1 /(\varepsilon p, m+1-\varepsilon p, m)
$$

$$
\mathrm{p}=1,2,3, \ldots
$$

It can be shown that [23], the sequence

$$
\varepsilon_{1,1}, \varepsilon_{3,1}, \varepsilon_{5,1}, \ldots, \varepsilon_{N, 1}
$$

converges to $\mathrm{f}(x, \mathrm{t})+\mathrm{E}_{\mathrm{D}}-\mathrm{c}_{0} / 2$ faster than the sequence of partial sums

$$
\mathrm{s}_{\mathrm{m}}, \mathrm{~m}=1,2,3, \ldots
$$

The actual procedure used to invert the Laplace transforms consists of using equation (54) together
with the ε-algorithm. The values of c and T are chosen

3. NUMERICAL RESULTS

For the purpose of numerical illustration, the problem was solved for the following choice of the functions $f_{1}(t)$ and $f_{2}(t)$:
$f_{1}(t)=\theta_{0} H(t)$,
$f_{2}(t)=P_{0} H(t)$,
where θ_{0} and P_{0} are constants and $H(t)$ is the Heaviside unit step function.

We, thus, have

$$
\begin{aligned}
& \overline{\mathrm{f}}_{1}(\mathrm{~s})=\frac{\theta_{0}}{s} \\
& \overline{\mathrm{f}}_{2}(\mathrm{~s})=\frac{P_{0}}{s}
\end{aligned}
$$

The roots k_{1}, k_{2}, and k_{3} of the characteristic equation are given by

$$
k_{1}=\sqrt{\frac{1}{3}\left[2 \mathrm{p} \sin \mathrm{q}+\mathrm{a}_{1}\right]}
$$

$$
k_{2}=\sqrt{\frac{1}{3}\left[\mathrm{a}_{1}-\mathrm{p}(\sqrt{3} \cos \mathrm{q}+\sin \mathrm{q})\right]}
$$

$$
k_{3}=\sqrt{\frac{1}{3}\left[\mathrm{a}_{1}+\mathrm{p}(\sqrt{3} \cos \mathrm{q}+\sin \mathrm{q})\right]}
$$

$$
p=\sqrt{\left[\left(\mathrm{a}_{1}^{2}-3 \mathrm{a}_{2}\right)\right.}, q=\frac{\sin ^{-1}(r)}{3}, \text { and }
$$

$$
r=-\frac{2 a_{1}^{3}-9 a_{1} a_{2}+27 a_{3}}{2 p^{3}},
$$

Copper material was chosen for purposes of numerical evaluations. The material constants of the problem are thus given by in SI units [24]
according to the criteria outlined in [23].

$$
\begin{aligned}
& \mathrm{T}_{0}=293 \mathrm{~K}, \rho=8,954 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, \tau_{0}=0.02 \mathrm{~s}, \tau=0 \\
& .2 \mathrm{~s}, \mathrm{c}_{\mathrm{E}}=383.1 \mathrm{~J} \cdot \mathrm{~kg}{ }^{-1} \cdot \mathrm{~K}^{-1}, \alpha_{\mathrm{t}}=1.78 \times 10^{-5} \mathrm{~K}^{-1}, \\
& \mathrm{k}=386 \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}, \lambda=7.76 \times 10^{10} \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s} \\
& -2, \mu=3.86 \times 10^{10} \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2}, \alpha \mathrm{c}=1.98 \times 10^{-4} \\
& \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1}, \mathrm{~d}=0.85 \times 10^{-8} \mathrm{~kg} \cdot \mathrm{~s} \cdot \mathrm{~m}^{-3}, \mathrm{a}=1.2 \times 10^{4} \\
& \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}, \mathrm{~b}=0.9 \times 10^{6} \mathrm{~m} 5 \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2} .
\end{aligned}
$$

Using these values, it was found that
$\eta=8886.73, \varepsilon=0.0168, \beta^{2}=4, \alpha_{1}=5.43, \alpha_{2}=$ 0.533 , and $\alpha_{3}=36.24$.

Figure 1 Displacement with all values of α

Figure 2 Displacement distribution for three values of $\alpha=0.0, \alpha=0.5$ and $\alpha=1.0$.

Figure 3 the difference between displacement distributions at values of $\alpha=0.0$ and $\alpha=1.0$

Figure 4 Temperature distribution with all values of α

Figure 5 Temperature distribution for three values of $\alpha=0.0, \alpha=0.5$ and $\alpha=1.0$.

Figure 6 the difference between Temperature distribution at values of $\alpha=\mathbf{0 . 0}$ and $\alpha=1.0$

Figure 7 Stress Distribution with all values of α

Figure 8 Stress Distribution for three values of $\alpha=0.0$, $\alpha=0.5$ and $\alpha=1.0$.

Figure 9 the difference between stress distribution at values of $\alpha=\mathbf{0 . 0}$ and $\alpha=1.0$

Figure 10 Concentration distribution all t values of α

Figure 14 Chemical Potential distribution at values of α $=0.0$ and $\alpha=1.0$
Figure 11 Concentration distribution at values of $\alpha=0.0$ and $\alpha=1.0$

Figure 15 the difference between Chemical Potential distribution at values of $\alpha=0.0$ and $\alpha=1.0$

Figure 12 the difference between Concentration distribution at values of $\alpha=0.0$ and $\alpha=1.0$

Figure 16 Chemical Potential distribution at values of α $=0.0$ and $\alpha=1.0$

Figure 17 Chemical Potential distribution a all t values of

Figure 18 the difference between Chemical Potential at values of $\alpha=0.0$ and $\alpha=1.0$

Figure 19 Strain distribution a all t values of α

Figure $\mathbf{2 0}$ Strain distribution at values of $\alpha=0.0$ and α $=1.0$

Figure 21 the difference between Strain distribution at values of $\alpha=0.0$ and $\alpha=1.0$

It should be noted that a unit of dimensionless time corresponds to $6.5 \times 10-12 \mathrm{~s}$, while a unit of dimensionless length corresponds to $2.7 \times$ 10-8 m.

The computations were carried out for one value of time $t=0.1$ and many values of α, from
0.0 to 1.0 especially two values of alpha $\alpha=1$ (corresponding to LordShulman theory) and $\alpha=$ 0.5 . The numerical method outlined above was used to obtain the inverse Laplace transforms for the temperature, displacement and stress distributions. Fortran programming language was used on a personal computer. The accuracy maintained was 5 significant digits for both the numerical integration and the inversion of the Laplace transform.

The displacement, temperature, stress, concentration, chemical potential, and strain are shown in Figs. 1-3, 4-6, 7-9, 10-12, 13-18, and 19-21respectively.As expected from the order of the partial differential equation, we have three waves emanating from each surface; the fronts of these waves are depicted in the figures as picks in the functions .

We can see in all figures that, all the functions considered have a non-zero value only in a bounded region of space and vanish identically outside this region. This region expands with the passage of time. Also, our results are the sam as As was mentioned by Sherief in [14] when $\alpha=$ 1.0 , we here mentioned about the variation of α , from 0.0 to 1.0.

The displacement component u is shown in Fig. 1, for all values of α while fig. 2, show the difference between displacements at $\alpha=0.0$ and $\alpha=1.0$. It is clear that difference maintained was 7 significant digits, i.e the effect values of α are very weak, and we can see also in Fig. 3 when, we choose three values of $\alpha(\alpha=0.0, \alpha=0.5$ and $\alpha=1$), the same coclusions are in temperature is shown in Figs. 4 to 6 , the stress component $\sigma x x$ in Figs. 7 to 9, chemical Concentration Figs. 10 to 12, and strain Figs. 19 to 21. But we note that in chemical potential Figs. 13 to 18 the effect
for values of α maintained was 4 significant digits only .

We can say that, for $\alpha=1$ the solution is that of the generalized theory of thermoelasticity and exhibits the phenomenon of finite speeds of propagation of waves. The question of whether the solution for $\alpha<1$ behaves similarly or not is still an open question.

As was mentioned by Povstenko [17] 'From numerical calculations, it is difficult to say whether the solution for a approaching 1 has a jump at the wave front or it is continuous with very fast changes. This aspect invites further investigation', Our calculations show that up to the specified accuracy, the solution seems to be non-zero only in a finite region of space.

The problem was solved for many values of α <1. The solutions seem to be of the same shape as that of $\alpha=0.5$ reported here. The difference is that as a decreases the region where the solution is non-zero becomes larger indicating faster speed of propagation. It is known that for $\alpha=0$, the solution is that of the coupled theory of thermoelasticity where the speed of propagation of the waves is infinite.

4-Acknowledgment:

The Authors present their deeply thanks for taif university for supporting us while doing in this research.

5 -References

[1.] M. Biot, Thermoelasticity and irreversible thermo-dynamics. J. Appl. Phys. 27, 240 ,1956.
[2.] H. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15 (1967) 299-309.H. Sherief, Ph.D. thesis, University of Calgary, Canada, 1980
[3.] R. Dhaliwal, H. Sherief, Generalized thermoelasticity for anisotropic media.Q. Appl. Math. 33, 1 (1980)
[4.] J. Ignaczak, A Note on Uniqueness in Thermoelasticity with One Relaxation Time, J. Thermal Stresses, vol. 5, pp. 257-263, 1982.
[5.] H. Sherief, Sherief, On Uniqueness and Stability in Generalized Thermoelasticity, Quart. Appl. Math., vol.45, pp. 773-778, 1987.
[6.] M. Anwar, H. Sherief, Sherief, State Space Approach to Generalized Thermoelasticity, J. ThermalStresses, vol. 11, pp. 353-365, 1988.
[7.] H. Sherief, Sherief, State Space Formulation for Generalized Thermoelasticity with One Relaxation Time Including Heat Sources, J. Thermal Stresses, vol. 16, pp. 163-180, 1993.
[8.] M. Anwar, H. Sherief, Boundary integral equation formulation of generalized thermoelasticity in a Laplace transform domain, Appl. Math. Modell. 12, 161-166,1988.
[9.] H. Sherief, F. Hamza, Hamza, Generalized Thermoelastic Problem of a Thick Plate under Axisymmetric Temperature Distribution, J. Thermal Stresses, vol. 17, pp. 435-452, 1994.
[10.] H. Sherief, F. Hamza, Hamza, Generalized TwoDimensional Thermoelastic Problems in Spherical Regions under Axisymmetric Distributions, J. Thermal Stresses, vol. 19, pp. 55-76, 1996.
[11.] H. Sherief, N. El-Maghraby An internal penny shaped-crack in an infinite thermoelastic solid, J. Therm. Stress. vol. 26 ,333-352, 2003
[12.] H. Sherief, N. El-Maghraby, A mode-I crack in an infinite space in generalized thermoelasticity, J. Therm. Stress. Vol. 28 ,465-484, 2005.
[13.] Hany H. Sherief and Heba A. Saleh, A Halfspace Problem in the Theory of Generalized Thermoelastic Diffusion, Int. J. Solids Struc., vol. 42, pp. 4484-4493, 2005.
[14.] N. El-MaghrabyA two-dimensional generalized thermoelasticity problem for a half-space under the action of a body force, J. Therm. Stress. 31557-568, ,2008.
[15.] N. El-Maghraby, A two-dimensional problem for a thick plate with heat sources in generalized
thermoelasticity, J. Therm. Stress. vol. 28 , 12271241, 2005.
[16.] N. El-Maghraby, Two-dimensional problem in generalized thermoelasticity with heat sources, J. Therm. Stress. vol. 27 , 227-240,2004.
[17.] W. Nowacki, "Dynamical problems of thermodiffusion in solids. Part I",Bull. Pol. Acad. Sci., Ser. IV (Techn. Sci.),22, 55-64,1974
[18.] W. Nowacki, Dynamical problems of thermodiffusion in solids II, Bull. Acad. Pol. Sci., Ser. Sci. Tech. 22, 129-135,1974.
[19.] W. Nowacki, Dynamical problems of thermodiffusion in solids III, Bull. Acad. Pol. Sci., Ser. Sci. Tech. 22 ,257-266, 1974.
[20.] W. Nowacki, Dynamical problems of thermodiffusion in elastic solids, Proc. Vib. Prob. 15 ,105-128, 1974.
[21.] H. Sherief, F. Hamza, H. Saleh, The theory of generalized thermoelastic diffusion, Int. J. Eng. Sci. 42, 591-608,2004.
[22.] Caputo, M., Linear model of dissipation whose Q is almost frequency independent-II. Geophysical Journal of the Royal Astronomical Society 13, 529-539, 1967.
[23.] Caputo, M., Vibrations on an infinite viscoelastic layer with a dissipative memory. Journal of the Acoustical Society of America 56, 897-904, 1974.
[24.] Caputo, M., Mainardi, F., a. A new dissipation model based on memorymechanism. Pure and Applied Geophysics 91, 134-147, 1971.
[25.] Caputo, M., Mainardi, F., b. Linear model of dissipation in anelastic solids. Rivista del Nuovo cimento 1, 161-198, 1971.
[26.] Hetnarski, R.B., Ignaczak, J., Generalized Thermoelasticity. Journal of Thermal Stresses 22, 4-5, 1999.
[27.] Y. Povstenko, Thermoelasticity that uses fractional heat conduction equation, J. Math. Sci. 162 296-305,2009.
[28.] Y. Povstenko, Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses, Mech. Res. Commun. 37(2010) 436-440.
[29.] Y. Povstenko, Fractional heat conduction and associated thermal stress, J. Therm. Stresses 28 (2005) 83-102.
[30.] Y. Povstenko, Fractional Cattaneo-type equations and generalized thermoelasticity, J. Therm. Stresses 34 (2011) 97-114.
[31.] H.H. Sherief, A. El-Sayed, A.A. El-Latief, Fractional order theory of thermoelasticity, Int. J. Solids Struct. 47 (2010) 269-275.
[32.] Application of fractional order theory of thermoelasticity to a 2 D problem for a halfspace.
[33.]

[^0]: ${ }^{1,2}$ Moustafa M. Salama, Math. ${ }^{1}$ Dept., Faculty of Science, Taif University 888, Saudi Arabia.
 ${ }^{2}$ Department of Computer-Based Engineering Applications,
 Informatics Research Institute, City of Scientific Research and Technology Applications, Egypt, E-mail: yasalama@yahoo.com
 ${ }^{1,3}$ A.M. Kozae, Math. Dept., Faculty of Science, Tanta Uni., Tanta, Egypt, E-mail: akozae55@yahoo.com
 ${ }^{1}$ M. A. Elsafty , E-mail: elsafty010@yahoo.co.uk

